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Abstract In this paper, we address the control problem of
bifurcations in the Morris–Lecar (ML) neuron model. With
the use of a dynamic state-feedback control, two Hopf bifur-
cation points in the ML neuron model with Type II excitabil-
ity can be relocated to new desired locations simultaneously.
Also, with the proposed control law, the neuronal excitability
characteristics can be transformed from Type I excitability
to Type II excitability by changing the type of bifurcation,
in which the neuron goes from quiescence to periodic spik-
ing from a saddle node on an invariant circle bifurcation to a
Hopf bifurcation. Simulation results are provided.

Keywords Bifurcation control · Morris–Lecar neuron
model · Dynamic state feedback control · Neurological
disease · Neuronal excitability

1 Introduction

The nervous system contains a network of neurons that regu-
late and coordinate all of the physiological processes within
our bodies. A breakdown in the coordination and control
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of the nervous system leads to an abnormality and a dis-
order in the underlying physiological control mechanism,
resulting in the occurrence of many neurological diseases
such as, for example, epilepsy, Alzheimer’s disease, Parkin-
son’s disease, or schizophrenia (Mackey and an der Hei-
den 1982; Bélair et al. 1995; Asai et al. 2003). From the
viewpoint of nonlinear dynamical systems, these diseases
can be considered to be caused by a bifurcation induced by
a change in the values of one or more regulating parame-
ters in the relevant nonlinear equations describing the neu-
ronal system (Titcombe et al. 2001; Kramer et al. 2006;
Luo et al. 2009). For example, Parkinson’s disease consti-
tutes a severe impairment caused by excessive synchroni-
zation of neuronal activity in basal ganglia. This excessive
synchronization leads to an increase in the amplitude of
local field potential oscillations and is considered as the
appearance of a Hopf bifurcation of the local field potential
(Luo et al. 2009). In the case of epilepsy, Kramer et al.
(2006) developed a mathematical model of human cortical
electrical activity that can produce activity characteristics
of a seizure – a visible symptom of epilepsy. Their model
shows that seizurelike oscillations occur when the strength
of excitatory synaptic input to both excitatory and inhibi-
tory cortical neurons exceeds a threshold value that induces
a Hopf bifurcation in the spatially averaged soma membrane
potential of the excitatory cells (Kramer et al. 2006). There-
fore, understanding the mechanism leading to a bifurcation of
neuronal systems and comprehending the design of a feed-
back control law by which such bifurcation characteristics
could be modified could lead to new diagnostics and ther-
apy trajectories for neurological diseases. For instance, to
eliminate seizure activity, a control input can be injected into
the human cortex such that it could prevent the occurrence
of a Hopf bifurcation in the spatially averaged soma mem-
brane potential of the excitatory cells within a certain range of

123

Author's personal copy



588 Biol Cybern (2012) 106:587–594

strength of excitatory synaptic input. The objectives of bifur-
cation control include (1) relocating an inherent bifurcation
(Wang and Abed 1995; Yu and Chen 2004; Nguyen and
Hong 2012), (2) stabilizing a bifurcated solution or branch
(Abed and Fu 1986; Ding and Hou 2010), (3) changing the
shape or type of a bifurcation chain (Wang and Abed 1995),
and (4) creating a new bifurcation at a preferable parame-
ter value (Abed and Wang 1995; Wen and Xu 2005). Var-
ious approaches to bifurcation control have been proposed
in the literature including static state feedback (Abed and
Fu 1986; Chen et al. 2000; Yu and Chen 2004), dynamic
state feedback (Wang and Abed 1995; Nguyen and Hong
2012), time-delayed feedback (Brandt and Chen 1997; Xiao
and Cao 2007), harmonic balance approximation (Tesi et al.
1996; Berns et al. 1998), and quadratic invariants in normal
forms (Kang 1998).

In a neuronal model, when a parameter changes, for exam-
ple, an applied current, the neuron can experience a bifur-
cation – a transition from one qualitative type of dynamic
to another. Various types of bifurcation have been reliably
observed in neuronal models (Laing and Longtin 2003;
Tsumoto et al. 2006; Touboul and Brette 2008; Nguyen
and Hong 2011; Lefebvre et al. 2009). Although various
electrophysiological mechanisms cause the transition from
quiescence to periodic spiking, there are only four types of
codimension one bifurcations that a neuronal model typically
undergoes, namely, saddle-node bifurcation, saddle-node on
invariant circle (SNIC) bifurcation, subcritical Hopf bifur-
cation, and supercritical Hopf bifurcation. All these bifur-
cation types have been identified in different models of
neurons such as, for example, the Hodgkin–Huxley model,
the two-dimensional Hindmarsh–Rose model, the FitzHugh–
Nagumo model, the Morris–Lecar (ML) model. (Izhikevich
2000; Brown et al. 2004). Hodgkin (1948) classifies neurons
into two types, Type I excitability and Type II excitability.
A neuron with Type I excitability exhibits a continuous f –I
(the firing frequency versus the applied current) curve that
shows the neuron starts firing at an arbitrary low frequency.
In contrast, a neuron with Type II excitability exhibits a dis-
continuous f –I curve, in which the neuron begins firing at a
nonzero frequency. From the viewpoint of bifurcation theory,
Type I neuronal excitability is observed when the rest poten-
tial (quiescent state) disappears through a SNIC bifurcation,
while Type II excitability is observed when the rest potential
loses stability via a Hopf bifurcation (Rinzel and Ermentrout
1989). Here the Hopf bifurcation can be either subcritical or
supercritical.

Recently, it has been reported that a washout-filter-aided
dynamic feedback control law can be employed to relocate
a bifurcation point and alter the stability of a Hopf bifurca-
tion in neuronal models (Xie et al. 2008a,b; Ding and Hou
2010). The main advantage of using the washout filter is that
it preserves the original equilibrium points. However, the

filter cannot be applied to systems with two Hopf bifurcations
since the relocation of one Hopf bifurcation point affects the
location of the other (Xie et al. 2008b). Very recently, we pro-
posed a dynamic state feedback control law that is able not
only to relocate two different Hopf bifurcation points simul-
taneously to any desired locations in n-dimensional nonlinear
systems but also to preserve the equilibrium structure of the
system (Nguyen and Hong 2012).

In this paper, we pay attention to the control of bifurca-
tions in the ML neuron model. The ML neuron model can
exhibit properties of either Type I excitability or Type II excit-
ability when system parameters are set appropriately (Rinzel
and Ermentrout 1989; St-Hilaire and Longtin 2004; Tsumoto
et al. 2006). First, we employ the dynamic state feedback con-
trol law of Nguyen and Hong (2012) to relocate two Hopf
bifurcation points in the ML neuron model with Type II excit-
ability to new desired locations to avoid their appearance in
a certain range of applied current. Interestingly, not only is
the aforementioned control objective achieved, but also the
originally subcritical Hopf bifurcation that corresponds to the
transition from quiescence to periodic spiking will become
supercritical. Hence, the jumping behavior that occurs when
a neuron transits from quiescence to periodic spiking can be
prevented. Second, we apply the proposed bifurcation control
method to change the types of neuronal excitability. Specifi-
cally, we transform Type I excitability into Type II excitabil-
ity by creating a new Hopf bifurcation at a preferable value
of the applied current such that the neuron undergoes a Hopf
bifurcation (instead of a SNIC bifurcation) from quiescence
to periodic spiking.

The rest of this paper is organized as follows. In Sect. 2, we
briefly describe the ML neuron model. The excitability and
bifurcations of the ML neuron model are also reviewed in this
section. In Sect. 3, we first state the conditions for the emer-
gence of Hopf bifurcations. Then a closed-loop ML system
based on a dynamic state feedback control law is proposed.
The details of control objectives as well as the procedure to
obtain the control gains are fully addressed in this section.
Finally, conclusions are given in Sect. 4.

2 ML model and its dynamics

2.1 Model description

The ML neuron model was originally postulated to describe
a variety of oscillatory membrane potential patterns of bar-
nacle muscle fibers (Morris and Lecar 1981). This model
consists of two ordinary differential equations as follows:

V̇ = 1

C
{I − ḡKw(V − VK) − ḡCam∞(V )(V − VCa)

−ḡL(V − VL)} , (1)
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ẇ = φ
w∞(V ) − w

τw(V )
, (2)

where V is the membrane potential, w is the recovery vari-
able associated with the slow ionic potassium current, C is
the membrane capacitance, and I is the external applied cur-
rent. The reversal potentials of the potassium, calcium, and
leak currents are denoted by VK, VCa, and VL, respectively.
The maximum conductances of the corresponding ionic cur-
rents are denoted by ḡK, ḡCa, and ḡL, and, finally, φ is the
temperature factor.

The calcium current is assumed to have an instantaneous
response. Therefore, the activation gating variable of the cal-
cium ion channel is approximated by its steady-state value
m∞. For the barnacle muscle fiber, the voltage-dependent
m∞(V ) is given by

m∞(V ) = 0.5 [1 + tanh {(V − V1)/V2}], (3)

where V1 and V2 are the constant potentials. The steady-state
value of the recovery variable w∞ and the time constant τw

with respect to the potassium activation are also voltage-
dependent functions, which are defined as follows:

w∞(V ) = 0.5 [1 + tanh {(V − V3)/V4}], (4)

τw(V ) = 1/ cosh {(V − V3)/(2V4)} , (5)

where V3 and V4 are constant potentials.

2.2 Excitability and bifurcations in the ML neuron model

The ML neuron model can exhibit properties of either Type I
excitability or Type II excitability depending on two differ-
ent sets of parameter values (Rinzel and Ermentrout 1989;
Tsumoto et al. 2006). In these two sets, except for V3, V4, ḡCa,
and φ, the parameter values are the same −VK = −84 mV,
VCa = 120 mV, VL = −60 mV, ḡK = 8.0 mS/cm2, ḡL =
2.0 mS/cm2, C = 20µF/cm2, V1 = −1.2, and V2 = 18 mV.

Case 1: Type I excitability where V3 = 12 mV, V4 =
17.4 mV, ḡCa = 4 mS/cm2, and φ = 1/15. The f –I curve
of this case is shown in Fig. 1. It can be seen that initially
the slope of the f –I curve tends to infinity; therefore, the
neuron starts firing with an arbitrary low frequency. The fir-
ing frequency increases continuously with the increase in the
applied current over a wide range. The bifurcation diagram
of the membrane potential V versus the applied current I is
depicted in Fig. 2. Here, the thick solid lines represent stable
equilibrium points, whereas the dotted line represents unsta-
ble ones. The maxima and minima of stable and unstable
limit cycles are indicated by thin and dashed lines, respec-
tively. Note that all the bifurcation diagrams in this paper
were produced using the XPPAUT software package (Ermen-
trout 2002). Evidently, the neuron undergoes a SNIC bifur-
cation of the equilibrium, which leads to a periodic spiking
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Fig. 1 f –I curve of original ML neuron model with Type I excitabil-
ity, which shows the neuron starting to fire at an arbitrary low frequency
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Fig. 2 Bifurcation diagram of original ML neuron model with Type I
excitability (thick solid lines: stable equilibria; dotted line: unstable
ones; thin and dashed lines: maxima and minima of stable and unstable
limit cycles, respectively)

state at I = 39.96µA/cm2, and the periodic oscillation ter-
minates with the appearance of a saddle-node bifurcation
of the spiking attractor at I = 116.1µA/cm2. Also, a sub-
critical Hopf bifurcation of the equilibrium is observed at
I = 97.82µA/cm2.

Case 2: Type II excitability where V3 = 2 mV, V4 =
30 mV, ḡCa = 4.4 mS/cm2, and φ = 1/25. In this case, the
f –I curve is discontinuous, which shows the neuron start-
ing to fire at a nonzero frequency (about 7 Hz), and the
response frequency range is narrow (Fig. 3). The bifurca-
tion diagram of the membrane potential V as a function of
the applied current I is shown in Fig. 4. From Fig. 4 it can
be seen that the neuron undergoes a subcritical Hopf bifur-
cation of the equilibrium, which leads to a periodic spiking
at I = 93.86µA/cm2, and the periodic oscillation termi-
nates with the appearance of a saddle-node bifurcation of
the spiking attractor at I = 216.9µA/cm2. Another sub-
critical Hopf bifurcation of the equilibrium is identified at
I = 212µA/cm2.

On the basis of the foregoing analyses we can verify
that the type of bifurcation determines the type of neuronal
excitability in a given model (Rinzel and Ermentrout 1989;
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Fig. 3 f –I curve of original ML neuron model with Type II excitabil-
ity, which shows the neuron starting to fire with a nonzero frequency
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Fig. 4 Bifurcation diagram of original ML neuron model with Type II
excitability (lines have same meanings as in Fig. 2)

Izhikevich 2007). In particular, a neuron with Type I excit-
ability undergoes a SNIC bifurcation, whereas a neuron with
Type II excitability undergoes a Hopf bifurcation from the
resting state to a periodic spiking state.

3 Hopf bifurcation control of ML neuron model

3.1 Conditions for emergence of Hopf bifurcations

Consider the following n-dimensional nonlinear system:

ẋ = f (x, μ),

f : Rn+1 → Rn, x ∈ Rn, μ ∈ R, (6)

where x is the state vector and μ the bifurcation parame-
ter; the vector field f (x, μ) is smooth in x and μ. Suppose
that system (6) has an equilibrium point at x = xe for some
μ = μe, i.e., f (xe, μe) = 0. The conditions under which
system (6) undergoes a Hopf bifurcation at μ = μe are as
follows: (1) the Jacobian matrix of system (6) evaluated at the
equilibrium point has a pair of pure imaginary eigenvalues
λ(μe) = ± jω, while the other eigenvalues have negative

real parts; and (2) the eigenvalues λ(μe) cross the imagi-
nary axis at some nonzero speed at the bifurcation point.
The former condition is known as the eigenvalue crossing
condition, whereas the latter condition is known as the trans-
versality condition. In creating a Hopf bifurcation at a desired
parameter value using a control signal, one expects to obtain
the analytical expressions of all the eigenvalues of the Jaco-
bian matrix of a closed-loop control system as functions of
the control gains. However, for a high-dimensional system,
such analytical expressions are very difficult or even impos-
sible to obtain. To avoid directly solving for all the eigen-
values, we adopt the equivalent conditions for the emergence
of Hopf bifurcations (Liu 1994). The main idea is based on the
Routh–Hurwitz stability criterion, by which the eigenvalue
crossing condition demands that all the coefficients of the
characteristic polynomial, as well as the first (n − 2) Routh–
Hurwitz determinants, be positive, while the transversality
condition requires that the (n − 1)th Routh–Hurwitz deter-
minant change from positive to negative at a nonzero rate.
The equivalent conditions in Liu (1994) are summarized as
follows.

Let the characteristic polynomial of the Jacobian matrix
be

P(λ;μe) = p0(μ
e)λn + p1(μ

e)λn−1 + · · · + pn(μe). (7)

The following matrix is introduced:

Hn(μe) =

⎡
⎢⎢⎢⎢⎢⎣

p1(μe) p0(μe) 0 · · · 0
p3(μe) p2(μe) p1(μe) · · · 0
p5(μe) p4(μe) p3(μe) · · · 0

...
...

...
. . .

...

p2n−1(μe) p2n−2(μe) p2n−3(μe) · · · pn(μe)

⎤
⎥⎥⎥⎥⎥⎦

, (8)

where pi (μ
e) = 0 if i < 0 or i > n. Let

Δ1(μe) = p1(μe), (9)

Δ2(μe) =
∣∣∣∣

p1(μe) p0(μe)

p3(μe) p2(μe)

∣∣∣∣ ,

...

Δn−1(μe)=

∣∣∣∣∣∣∣∣∣∣∣

p1(μe) p0(μe) 0 · · · 0
p3(μe) p2(μe) p1(μe) · · · 0
p5(μe) p4(μe) p3(μe) · · · 0

...
...

...
. . .

...

p2n−3(μe) p2n−4(μe) p2n−5(μe) · · · pn−1(μe)

∣∣∣∣∣∣∣∣∣∣∣

Then system (6) undergoes a Hopf bifurcation at μ = μe

if the following conditions are satisfied.
(H1) Eigenvalue crossing condition:

pn(μe) > 0, (10)

Δi (μ
e) > 0, i = 1, . . . , n − 2, (11)

Δn−1(μ
e) = 0. (12)
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(H2) Transversality condition:

d {Δn−1(μ)}
dμ

∣∣
μ=μe �= 0. (13)

3.2 Closed-loop ML system based on a dynamic state
feedback controller

A general dynamic state feedback control law for controlling
Hopf bifurcations in system (6) is introduced as follows:

u = u(x, y), (14)

ẏ = g(x, y), (15)

where y ∈ Rm(1 ≤ m ≤ n) is the state vector of the con-
troller, and the feedback control u(x, y) and the vector field
g(x, y) are smooth in x and y. Specifically, the following
feedback control law, which has a linear term and a cubic
term, is proposed (Nguyen and Hong 2012).

ui (xi , yi ) = k1i xi + k3i (xi − xe1
i )3 − li yi , (16)

ẏi = ui (xi , yi ), (17)

where xe1
i (i = 1, 2, . . . , m) are the equilibrium values of

xi at the first designated Hopf bifurcation point, k1i and k3i

are the control gains, and li are constant parameters. Then
the closed-loop control system can be written as

ẋ = f (x, μ) + u(x, y), (18)

ẏ = g(x, y), (19)

where u(x, y) = [u1(x1, y1), . . . , um(xm, ym), 0, . . . , 0]T

and g(x, y) = [u1(x1, y1), . . . , um(xm, ym)]T . Due to the
nature of the proposed control law in (16)–(17), ui = 0
for ẏi = ui = 0. Hence, if xe is an equilibrium of the
original system (6), then (xe, ye) is the equilibrium of the
control system (18)–(19), where ye = (ye

1, ye
2, . . . , ye

m) and
ye

i = (k1i xe
i + k3i (xe

i − xe1
i )3)/ li (i = 1, 2, . . ., m). In other

words, all the equilibrium points of the original system (6)
remain unchanged when the control law (16)–(17) is applied.
The ability to preserve the equilibrium structure of the orig-
inal system during the control process is one of the essential
characteristics required in bifurcation control. In this paper,
we select only the membrane potential V as an input to be
controlled because it can be readily measured, and therefore
the controller can be realized easily. Then, the closed-loop
ML system is given as follows:

V̇ = 1

C
{I − ḡKw(V − VK) − ḡCam∞(V )(V − VCa)

−ḡL(V − VL)} + k1V + k3(V − V e1)3 − ly, (20)

ẇ = φ
w∞(V ) − w

τw(V )
, (21)

ẏ = k1V + k3(V − V e1)3 − ly, (22)

where V e1 is the equilibrium value of the membrane potential
at the first designated Hopf bifurcation.

3.3 Relocate the inherent Hopf bifurcations

In this section, we employ the proposed control law (16)–
(17) to relocate both inherent Hopf bifurcations in the ML
model with Type II excitability (Fig. 4) to the desired points
to avoid their occurrence in a certain range of applied cur-
rent, irrespective of whether the corresponding steady states
are stable or unstable. Specifically, we aim to advance the
left Hopf bifurcation toward I1 = 60µA/cm2 and the right
Hopf bifurcation toward I2 = 180µA/cm2. At the first des-
ignated Hopf bifurcation (i.e., I1 = 60µA/cm2), the equilib-
rium value of the membrane potential of the ML model with
parameter values specified in case 2 of Sect. 2.2 is obtained
as V e1 = −36.7547 mV. Here, we set l = 0.2. Therefore,
the control law in this case can be written as

u(V, y) = k1V + k3(V + 36.7574)3 − 0.2y, (23)

ẏ = k1V + k3(V + 36.7574)3 − 0.2y. (24)

In what follows, we will show how to determine the con-
trol gains k1 and k3 such that the closed-loop control system
(20)–(22) undergoes Hopf bifurcations at I1 = 60µA/cm2

and I2 = 180µA/cm2.
At I1 = 60µA/cm2, the equilibrium point of (20)–

(22) is obtained as (V e1, we1, ye1) = (−36.7547, 0.0702,

−183.7735k1). Therefore, we obtain the Jacobian matrix as
follows:

J (I1) =
⎡
⎣

−0.0612 + k1 −18.8981 −0.2
0.0002 −0.0486 0

k1 0 −0.2

⎤
⎦. (25)

Then the characteristic polynomial of J (I1) is given by

P(λ; I1) = p0λ
3 + p1λ

2 + p2λ + p3 = 0, (26)

where p0 = 1, p1 = 0.3099− k1, p2 = 0.0289−0.0486k1,

and p3 = 0.0014.
Substituting pi , i = 0, 1, . . . , 3, into the eigenvalue cross-

ing condition (10)–(12) we obtain

p3 = 0.0014 > 0, (27)

Δ1 = p1 = 0.3099 − k1 > 0, (28)

Δ2 = p1 p2 − p0 p3 = 0.0486

k2
1 − 0.0440 k1 + 0.0076 = 0. (29)

Solving the preceding two inequalities (27) and (29), we
obtain k1 = 0.2311. For the transversality condition (13) it
can be numerically computed that

d {Δ2(I )}
d I

∣∣I=I1 = −0.6041 × 10−4 �= 0. (30)
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Fig. 5 Bifurcation diagram of closed-loop ML system: two inherent
Hopf bifurcations in original ML model with Type II excitability (Fig. 4)
have been relocated to new positions under control law in (23)–(24) with
k1 = 0.2311 and k3 = −1.3539 × 10−4 (lines have same meanings as
in Fig. 2)

From the preceding calculation it is noted that k3 has no
effect on the location of the left Hopf bifurcation point.
Therefore, k3 can be used to relocate the right Hopf bifur-
cation point. The equilibrium point of the closed-loop ML
system (20)–(22) at I2 = 180µA/cm2 is obtained as
(V e2, we2, ye2) = (4.4440, 0.5406, 5.1352 + 349641k3).
Substituting the obtained value of k1 into the Jacobian matrix
of the closed-loop control system gives us

J (I2) =
⎡
⎣

0.4125 + 5092k3 −35.3776 −0.2
6.6281 × 10−4 −0.0401 0

0.2311 + 5092k3 0 −0.2

⎤
⎦. (31)

The characteristic polynomial of J (I2) is given as follows:

P(λ; I2) = p0λ
3 + p1λ

2 + p2λ + p3 = 0, (32)

where p0 = 1, p1 = −0.1724 − 5092k3, p2 = −0.0213 −
203.8495k3, and p3 = 0.0032. According to the conditions
for the emergence of Hopf bifurcations formulated in (10)–
(13), we finally obtain k3 = −1.3539 × 10−4.

The bifurcation diagram of the controlled ML system is
depicted in Fig. 5. As expected, the left and right Hopf bifur-
cation points have been successfully advanced toward I1 =
60µA/cm2 and I2 = 180µA/cm2, respectively. It is inter-
esting that the left Hopf bifurcation in the controlled ML
system becomes supercritical. Therefore, the occurrence of
jumping behavior between quiescence and periodic spiking
in the controlled ML system under perturbation is prevented.

To convey more of the effect of the control gains k1 and k3

on the locations of Hopf bifurcation points in the closed-loop
ML system (20)–(22), two-parameter bifurcation diagrams
with respect to k1 and k3 are presented. As mentioned previ-
ously, k3 has no effect on the location of the left Hopf bifur-
cation point. Therefore, we temporally set k3 = 0 and vary
the control gain k1. In this case, changes to the Hopf bifur-
cation points are shown in Fig. 6, in which the left branch
shows a continuation of the left Hopf bifurcation point and the

50 100 150 200 250
-2.0

-1.5

-1.0

-0.5

0

0.5

I [µA/cm2 ]

k 1

300

Fig. 6 Two-parameter bifurcation diagram depicting continuation of
Hopf bifurcation points of closed-loop ML system with respect to k1
when k3 = 0 (the left and right Hopf bifurcation points are depicted by
left and right branches, respectively)

right branch depicts a continuation of the right Hopf bifur-
cation point. It can be seen that when varying the control
gain k1, not only does the location of the left Hopf bifur-
cation point change, but that of the right Hopf bifurcation
point does as well. Decreasing the value of k1 results in a
decrease in the distance between two Hopf bifurcation points.
These two Hopf bifurcation points approach each other when
k1 = −1.6382, corresponding to the value I = 136µA/cm2.
With further decreases in k1, a Hopf bifurcation no longer
occurs; therefore, the neuron cannot fire spikes. From Fig. 6
it is obvious that one can relocate the left Hopf bifurcation
point to any location in the region 0 ≤ I < 136 (µA/cm2) by
selecting the appropriate value of k1 in the region 0.2972 ≤
k1 < −1.6382.

Once the location of the left Hopf bifurcation point is
determined by a specific value of k1, the location of the
right Hopf bifurcation can be relocated to a desired location
through the control gain k3. To show the changes in the right
Hopf bifurcation point location due to k3, we fix the left Hopf
bifurcation point at I = 60µA/cm2 (i.e., k1 = 0.2311 and
V e1 = −36.7574) and create the two-parameter bifurcation
diagram with respect to k3, which shows the continuation
of the right Hopf bifurcation point. As shown in Fig. 7, the
location of the right Hopf bifurcation point can be assigned
within a wide range of the applied current.

3.4 Changing the types of neuronal excitability

As mentioned in Sect. 2.2, the ML neuron model can exhibit
properties of either Type I excitability or Type II excitability
depending on two different sets of values of four parameters,
namely, V3, V4, ḡCa, and φ. In other words, to change the
types of neuronal excitability, one must change the values of
these parameters. From a dynamical point of view, Type I
excitability undergoes a SNIC bifurcation, while Type II
excitability undergoes a Hopf bifurcation from quiescence
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Fig. 7 Two-parameter bifurcation diagram that shows continuation of
right Hopf bifurcation point of closed-loop ML system with respect to
k3 when left Hopf bifurcation point is fixed at I = 60µA/cm2 (i.e.,
k1 = 0.2311 and V e1 = −36.7574)

to periodic spiking. Therefore, by modifying the bifurcation
structure one may change the types of neuronal excitability.
In this section, we employ the proposed bifurcation control
method to convert Type I excitability into Type II excitability
without changing any parameter values. The idea is to create
two Hopf bifurcation points at desired parameter values such
that the neuron transits from quiescence to periodic spiking
via a Hopf bifurcation (instead of a SNIC bifurcation) and
the periodic oscillation terminates at another Hopf bifurca-
tion. The original bifurcation diagram of the ML model with
Type I excitability is shown in Fig. 2. At first, we shift the
inherent Hopf bifurcation to I1 = 250µA/cm2, and then
a new Hopf bifurcation is created at I2 = 50µA/cm2. At
I1 = 250µA/cm2, the equilibrium value of the membrane
potential of the ML model with parameter values specified
in case 1 of Sect. 2.2 is obtained as V e1 = 14.8798 mV.
Therefore, the control law in this case is written as follows:

u(V, y) = k1V + k3(V − 14.8798)3 − 0.2y, (33)

ẏ = k1V + k3(V − 14.8798)3 − 0.2y. (34)

Then the Jacobian matrix of the closed-loop control system
(20)–(22) can be obtained as follows:

J (I1) =
⎡
⎣

−0.2170 + k1 −39.5519 −0.2
0.0019 −0.0669 0

k1 0 −0.2

⎤
⎦, (35)

and the characteristic polynomial of J (I1) is

P(λ; I1) = p0λ
3 + p1λ

2 + p2λ + p3 = 0, (36)

where p0 = 1, p1 = 0.4839 − k1, p2 = 0.1453 − 0.0669k1,
and p3 = 0.0177. The substitution of pi (i = 0 ∼ 3) to
(10)–(13) yields k1 = 0.3395.

Substituting the obtained value of k1 into the Jacobian
matrix of the closed-loop control system (20)–(22), at I2 =
50µA/cm2, we obtain the following expression.
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Fig. 8 Bifurcation diagram of closed-loop ML system: the neuron tran-
sits from quiescence to periodic spiking via Hopf bifurcation instead
of SNIC bifurcation (Fig. 2) under the control law in (33)–(34) with
k1 = 0.3395 and k3 = −0.1997 × 10−2 (definitions of individual lines
are as in Fig. 2)
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Fig. 9 f –I curve of closed-loop ML system exhibiting a discontinu-
ity, showing that the type of neuronal excitability has been converted
from Type I (Fig. 1) to Type II under the control law in (33)–(34) with
k1 = 0.3395 and k3 = −0.1997 × 10−2

J (I2) =
⎡
⎣

0.5328 + 266.5439k3 −35.7815 −0.2
0.0017 −0.0678 0

0.3395 + 266.5439k3 0 −0.2

⎤
⎦. (37)

The characteristic polynomial of J (I2) becomes

P(λ; I2) = p0λ
3 + p1λ

2 + p2λ + p3 = 0, (38)

where p0 = 1, p1 = −0.2649−266.5439k3, p2 = −4.82×
10−4 − 18.0849k3, and p3 = 0.0095. Finally, we obtain
k3 = −0.1997 × 10−2. The bifurcation diagram of the con-
trolled ML system is shown in Fig. 8. It is obvious that the
neuron transits from quiescence to periodic spiking via a
Hopf bifurcation instead of a SNIC bifurcation as the uncon-
trolled system does (Fig. 2). The firing frequency versus the
applied current is depicted in Fig. 9. It can be seen that the
f –I curve is discontinuous; the neuron starts firing with a
nonzero frequency. Therefore, under control, the type of neu-
ronal excitability has been changed from Type I to Type II.
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4 Conclusions

Our attention in this paper focused on addressing the problem
of controlling bifurcations in the ML neuron model. Using
a dynamic state feedback control law, the locations of both
Hopf bifurcations in the ML neuron model with Type II excit-
ability could be relocated, simultaneously, to new desired
parameter values. In addition, for the ML neuron model orig-
inally exhibiting properties of Type I excitability, if a new
Hopf bifurcation was created at a preferable value of the
stimulated current, the type of neuronal excitability could be
transformed from Type I excitability to Type II excitability
without changing any parameter values of the neuron model.
Bifurcation phenomena are believed to play an important
role in the emergence of many neurological diseases such
as epilepsy, Parkinson’s disease, and others. Therefore, we
expect that the results obtained in this paper will lead to new
treatment strategies for neurological diseases.
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